Blogia

modalidadguatica2011

ADAPTADORES

En computación, un adaptador es un dispositivo loco de hardware o un componente software, que convierte datos transmitidos en un formato a otro. El formato de datos puede ser, por ejemplo, un mensaje enviado entre objetos en una aplicación, o un paquete enviado a través de una red de comunicaciones.[1]

En los ordenadores personales modernos, casi todos los dispositivos periféricos usan un adaptador para comunicarse con el bus del sistema, por ejemplo:

El concepto de adaptador no debe confundirse con el de tarjeta de expansión. Aunque cada tarjeta de expansión típicamente implementa algún tipo de adaptador, muchos otros adaptadores se incluyen directamente en la placa base de los PC modernos

Un adaptador software es un tipo de software que se localiza lógicamente entre otros componentes software y transforma los mensajes entre ellos para que puedan comunicarse.

En programación, el patrón de diseño adapter (a menudo referido como el patrón envoltorio o simplemente envoltorio) es un patrón de diseño para adaptar una interfaz de una clase en otra interfaz que espera un cliente.

Adaptadores de recursos

Los adaptadores de recursos se usan para recuperar y enrutar datos. [cita requerida] Proporcionan acceso a bases de datos, ficheros, sistemas de mensajes, aplicaciones de empresa y otras fuentes de datos y objetivos.

Cada adaptador incluye un conjunto de comandos que pueden usarse para adaptar su funcionamiento. Los comandos del adaptador especifican diferentes colas y gestores de colas, especifican mensajes por identificadores de mensaje, especifican conjuntos de mensajes con el mismo identificador de mensaje, descriptores de mensaje en los datos y mucho más.

Los adaptadores de recursos responden las preguntas "¿De dónde deben venir los datos?" y "¿Dónde deben ir los datos?".

Los adaptadores de recursos proporcionados con muchos productos de integración permiten la transformación de los datos y reconocimiento de comportamiento específico del adaptador en distintos sistemas y estructuras de datos.

CONTROLADORES

Un controlador de dispositivo, llamado normalmente controlador (en inglés, device driver) es un programa informático que permite al sistema operativo interactuar con un periférico, haciendo una abstracción del hardware y proporcionando una interfaz -posiblemente estandarizada- para usarlo. Se puede esquematizar como un manual de instrucciones que le indica al sistema operativo, cómo debe controlar y comunicarse con un dispositivo en particular. Por tanto, es una pieza esencial, sin la cual no se podría usar el hardware.

Existen tantos tipos de controladores como tipos de periféricos, y es común encontrar más de un controlador posible para el mismo dispositivo, cada uno ofreciendo un nivel distinto de funcionalidades. Por ejemplo, aparte de los oficiales (normalmente disponibles en la página web del fabricante), se pueden encontrar también los proporcionados por el sistema operativo, o también versiones no oficiales hechas por terceros.

Debido a que el software de controladores de dispositivos se ejecuta como parte del sistema operativo, con acceso sin restricciones a todo el equipo, resulta esencial que sólo se permitan los controladores de dispositivos autorizados. La firma y el almacenamiento provisional de los paquetes de controladores de dispositivos en los equipos cliente, mediante las técnicas descritas en esta guía, proporcionan las ventajas siguientes:

  • Seguridad mejorada. Puesto que los usuarios estándar no pueden instalar controladores de dispositivos que no estén firmados o que estén firmados por un editor que no es de confianza, los administradores tendrán un control riguroso respecto a los controladores de dispositivos que pueden usarse en una organización. Podrán impedirse los controladores de dispositivos desconocidos, así como cualquier controlador de dispositivo que el administrador no permita expresamente. Mediante el uso de directivas de grupo, un administrador puede proporcionar a todos los equipos cliente de una organización los certificados de los editores que se consideren de confianza, permitiendo la instalación de los controladores sin intervención del usuario, para comprobar que se trata de una firma digital de confianza.
  • Reducción de los costes de soporte técnico. Los usuarios sólo podrán instalar los dispositivos que hayan sido probados y admitidos por la organización. En consecuencia, el sistema permite mantener la seguridad del equipo, al tiempo que se reducen las solicitudes del departamento de soporte técnico.
  • Experiencia de usuario mejorada. Un paquete de controladores firmado por un editor de confianza y almacenado provisionalmente en el almacén de controladores funciona de modo automático, cuando el usuario conecta el dispositivo al equipo. No se requiere acción alguna por parte del usuario.

En esta sección se incluyen las tareas principales para la seguridad de los paquetes de controladores de dispositivos:

Los controladores de dispositivo (device drivers en inglés) son programas añadidos al núcleo del sistema operativo, concebidos inicialmente para gestionar periféricos y dispositivos especiales. Pueden ser de dos tipos: orientados a caracteres (tales como los dispositivos NUL, AUX, PRN, del sistema) o bien orientados a bloques, constituyendo las conocidas unidades de disco. La diferencia fundamental entre ambos tipos de controladores es que los primeros reciben o envían la información carácter a carácter; en cambio, los controladores de dispositivo de bloques procesan, como su propio nombre indica, bloques de cierta longitud en bytes (sectores). Los controladores de dispositivo, aparecidos con el DOS 2.0, permiten añadir nuevos componentes al ordenador sin necesidad de rediseñar el sistema operativo.

Tradicionalmente han sido programas binarios puros, similares a los COM aunque ensamblados con un ORG 0, a los que se les colocaba una extensión SYS. Sin embargo, no hay razón para que ello sea así, ya que un controlador de dispositivo puede estar incluido dentro de un programa EXE, con la condición de que el código del controlador sea el primer segmento de dicho programa. El EMM386.EXE del MS-DOS 5.0 sorprendió a más de uno en su día, ya que llamaba la atención observar como se podía cargar con DEVICE: lo cierto es que esto es factible incluso desde el DOS 2.0 (pese a lo que pueda indicar algún libro), pero ha sido mantenido casi en secreto. Actualmente es relativamente frecuente encontrar programas de este tipo. La ventaja de un controlador de dispositivo de tipo EXE es que puede ser ejecutado desde el DOS para modificar sus condiciones de operación, sin complicar su uso por parte del usuario con otro programa adicional. Además, un controlador de dispositivo EXE puede superar el limite de los 64 Kb, ya que el DOS se encarga de relocalizar las referencias absolutas a segmentos como en cualquier programa EXE ordinario.

PERIFÉRICOS

En informática, se denomina periféricos a los aparatos o dispositivos auxiliares e independientes conectados a la unidad central de procesamiento de una computadora.

Se consideran periféricos tanto a las unidades o dispositivos a través de los cuales la computadora se comunica con el mundo exterior, como a los sistemas que almacenan o archivan la información, sirviendo de memoria auxiliar de la memoria principal.[cita requerida]

Se entenderá por periférico al conjunto de dispositivos que, sin pertenecer al núcleo fundamental de la computadora, formado por la CPU y la memoria central, permitan realizar operaciones de entrada/salida (E/S) complementarias al proceso de datos que realiza la CPU. Estas tres unidades básicas en un computador, CPU, memoria central y el subsistema de E/S, están comunicadas entre sí por tres buses o canales de comunicación:

  • el bus de direcciones, para seleccionar la dirección del dato o del periférico al que se quiere acceder,
  • el bus de control, básicamente para seleccionar la operación a realizar sobre el dato (principalmente lectura, escritura o modificación) y
  • el bus de datos, por donde circulan los datos.

A pesar de que el término periférico implica a menudo el concepto de “adicional pero no esencial”, muchos de ellos son elementos fundamentales para un sistema informático. El teclado y el monitor, imprescindibles en cualquier computadora personal de hoy en día (no lo fueron en los primeros computadores), son posiblemente los periféricos más comunes, y es posible que mucha gente no los considere como tal debido a que generalmente se toman como parte necesaria de una computadora. El mouse es posiblemente el ejemplo más claro de este aspecto. Hace menos de 20 años no todos las computadora personales incluían este dispositivo. El sistema operativo MS-DOS, el más común en esa época, tenía una interfaz de línea de comandos para la que no era necesaria el empleo de un mouse, todo se hacía mediante comandos de texto. Fue con la popularización de Finder, sistema operativo de la Macintosh de Apple y la posterior aparición de Windows cuando el mouse comenzó a ser un elemento imprescindible en cualquier hogar dotado de una computadora personal. Actualmente existen sistemas operativos con interfaz de texto que pueden prescindir del mouse como, por ejemplo, algunos sistemas básicos de UNIX y GNU/Linux.

 

Tipos de periféricos

Los periféricos pueden clasificarse en 5 categorías principales:

  • Periféricos de entrada: captan y envían los datos al dispositivo que los procesará.
  • Periféricos de salida: son dispositivos que muestran o proyectan información hacia el exterior del ordenador. La mayoría son para informar, alertar, comunicar, proyectar o dar al usuario cierta información, de la misma forma se encargan de convertir los impulsos eléctricos en información legible para el usuario. Sin embargo, no todos de este tipo de periféricos es información para el usuario.
  • Periféricos de entrada/salida (E/S) sirven básicamente para la comunicación de la computadora con el medio externo

Los periféricos de entrada/salida son los que utiliza el ordenador tanto para mandar como para recibir información. Su función es la de almacenar o guardar de forma permanente o virtual todo aquello que hagamos con el ordenador para que pueda ser utilizado por los usuarios u otros sistemas.

Son ejemplos de periférico de entrada/salida o de almacenamiento:

   * Disco duro

   * Grabadora y/o lector de CD

   * Grabadora y/o lector de DVD

   * Grabadora y/o lector de HD-DVD

   * Memoria Flash

   * Cintas magnéticas

   * Memoria portátil

   * Disquete

   * Pantalla táctil

   * Casco virtual

   * Grabadora y/o lector de CD

   * Grabadora y/o lector de DVD

   * Grabadora y/o lector de Blu-ray

   * Grabadora y/o lector de HD-DVD

  • Periféricos de almacenamiento: son los dispositivos que almacenan datos e información por bastante tiempo. La memoria RAM no puede ser considerada un periférico de almacenamiento, ya que su memoria es volátil y temporal.
  • Periféricos de comunicación: son los periféricos que se encargan de comunicarse con otras máquinas o computadoras, ya sea para trabajar en conjunto, o para enviar y recibir información.

Periféricos de entrada

Ratón.

Son los que permiten introducir datos externos a la computadora para su posterior tratamiento por parte de la CPU. Estos datos pueden provenir de distintas fuentes, siendo la principal un ser humano. Los periféricos de entrada más habituales son:

Periféricos de salida

Son los que reciben información que es procesada por la CPU y la reproducen para que sea perceptible por el usuario. Algunos ejemplos son:

 Periféricos de almacenamiento

Interior de un disco duro.

Se encargan de guardar los datos de los que hace uso la CPU para que ésta pueda hacer uso de ellos una vez que han sido eliminados de la memoria principal, ya que ésta se borra cada vez que se apaga la computadora. Pueden ser internos, como un disco duro, o extraíbles, como un CD. Los más comunes son:

  • Disco duro
  • Disquete
  • Unidad de CD
  • Unidad de DVD
  • Unidad de Blu-ray Disc
  • Memoria flash
  • Memoria USB
  • Cinta magnética
  • Tarjeta perforada
  • Memoria portátil
  • Otros dispositivos de almacenamiento:
    • Zip (Iomega): Caben 100 Mb y utiliza tecnología magnética.
    • EZFlyer (SyQuest): Caben 230 Mb y tiene una velocidad de lectura muy alta
    • SuperDisk LS-120: Caben 200 Mb y utilizan tecnología magneto-óptica.
    • Magneto-ópticos de 3,5: Caben de 128 Mb a 640 Mb
    • Jaz (Iomega): Es como el Zip y caben de 1 GB a 2 GB.

Periféricos de comunicación

Su función es permitir o facilitar la interacción entre dos o más computadoras, o entre una computadora y otro periférico externo a la computadora. Entre ellos se encuentran los siguientes:

 

FUENTE DE ALIMENTACIÓN

En electrónica, una fuente de alimentación es un dispositivo que convierte la tensión alterna de la red de suministro, en una o varias tensiones, prácticamente continuas, que alimentan los distintos circuitos del aparato electrónico al que se conecta (ordenador, televisor, impresora, router, etc.).

Clasificación

Las fuentes de alimentación, para dispositivos electrónicos, pueden clasificarse básicamente como fuentes de alimentación lineales y conmutadas. Las lineales tienen un diseño relativamente simple, que puede llegar a ser más complejo cuanto mayor es la corriente que deben suministrar, sin embargo su regulación de tensión es poco eficiente. Una fuente conmutada, de las misma potencia que una lineal, será más pequeña y normalmente más eficiente pero será más compleja y por tanto más susceptible a averías.

Fuentes de alimentación lineales

Las fuentes lineales siguen el esquema: transformador, rectificador, filtro, regulación y salida.

En primer lugar el transformador adapta los niveles de tensión y proporciona aislamiento galvánico. El circuito que convierte la corriente alterna en continua se llama rectificador, después suelen llevar un circuito que disminuye el rizado como un filtro de condensador. La regulación, o estabilización de la tensión a un valor establecido, se consigue con un componente denominado regulador de tensión. La salida puede ser simplemente un condensador. Esta corriente abarca toda la energía del circuito,esta fuente de alimentación deben tenerse en cuenta unos puntos concretos a la hora de decidir las características del transformador.

Fuentes de alimentación conmutadas

Una fuente conmutada es un dispositivo electrónico que transforma energía eléctrica mediante transistores en conmutación. Mientras que un regulador de tensión utiliza transistores polarizados en su región activa de amplificación, las fuentes conmutadas utilizan los mismos conmutándolos activamente a altas frecuencias (20-100 Kilociclos típicamente) entre corte (abiertos) y saturación (cerrados). La forma de onda cuadrada resultante es aplicada a transformadores con núcleo de ferrita (Los núcleos de hierro no son adecuados para estas altas frecuencias) para obtener uno o varios voltajes de salida de corriente alterna (CA) que luego son rectificados (Con diodos rápidos) y filtrados (Inductores y capacitores) para obtener los voltajes de salida de corriente continua (CC). Las ventajas de este método incluyen menor tamaño y peso del núcleo, mayor eficiencia y por lo tanto menor calentamiento. Las desventajas comparándolas con fuentes lineales es que son mas complejas y generan ruido eléctrico de alta frecuencia que debe ser cuidadosamente minimizado para no causar interferencias a equipos próximos a estas fuentes.

Las fuentes conmutadas tienen por esquema: rectificador, conmutador, transformador, otro rectificador y salida.

La regulación se obtiene con el conmutador, normalmente un circuito PWM (Pulse Width Modulation) que cambia el ciclo de trabajo. Aquí las funciones del transformador son las mismas que para fuentes lineales pero su posición es diferente. El segundo rectificador convierte la señal alterna pulsante que llega del transformador en un valor continuo. La salida puede ser también un filtro de condensador o uno del tipo LC.

Las ventajas de las fuentes lineales son una mejor regulación, velocidad y mejores características EMC. Por otra parte las conmutadas obtienen un mejor rendimiento, menor coste y tamaño.

Especificaciones

Una especificación fundamental de las fuentes de alimentación es el rendimiento, que se define como la potencia total de salida entre la potencia activa de entrada. Como se ha dicho antes, las fuentes conmutadas son mejores en este aspecto.

El factor de potencia es la potencia activa entre la potencia aparente de entrada. Es una medida de la calidad de la corriente.

Aparte de disminuir lo más posible el rizado, la fuente debe mantener la tensión de salida al voltaje solicitado independientemente de las oscilaciones de la línea, regulación de línea o de la carga requerida por el circuito, regulación de carga.

Fuentes de alimentación especiales

Entre las fuentes de alimentación alternas, tenemos aquellas en donde la potencia que se entrega a la carga está siendo controlada por transistores, los cuales son controlados en fase para poder entregar la potencia requerida a la carga.

Otro tipo de alimentación de fuentes alternas, catalogadas como especiales son aquellas en donde la frecuencia es variada, manteniendo la amplitud de la tensión logrando un efecto de fuente variable en casos como motores y transformadores de tensión...

 

BUS Y TIPO DE BUSES

En arquitectura de computadores, el bus es un sistema digital que transfiere datos entre los componentes de una computadora o entre computadoras. Está formado por cables o pistas en un circuito impreso, dispositivos como resistencias y condensadores además de circuitos integrados.

En los primeros computadores electrónicos, todos los buses eran de tipo paralelo, de manera que la comunicación entre las partes del computador se hacía por medio de cintas o muchas pistas en el circuito impreso, en los cuales cada conductor tiene una función fija y la conexión es sencilla requiriendo únicamente puertos de entrada y de salida para cada dispositivo.

La tendencia en los últimos años es el uso de buses seriales como el USB, Custom Firewire para comunicaciones con periféricos y el reemplazo de buses paralelos para conectar toda clase de dispositivos, incluyendo el microprocesador con el chipset en la propia placa base. Son conexiones con lógica compleja que requieren en algunos casos gran poder de cómputo en los propios dispositivos, pero que poseen grandes ventajas frente al bus paralelo que es menos inteligente.

Existen diversas especificaciones de bus que definen un conjunto de características mecánicas como conectores, cables y tarjetas, además de protocolos eléctricos y de señales.

 

Funcionamiento

La función del MICROBus es la de permitir la conexión lógica entre distintos subsistemas de un sistema digital, enviando datos entre dispositivos de distintos órdenes: desde dentro de los mismos circuitos integrados, hasta equipos digitales completos que forman parte de supercomputadoras.

La mayoría de los buses están basados en conductores metálicos por los cuales se trasmiten señales eléctricas que son enviadas y recibidas con la ayuda de integrados que poseen una interfaz del bus dado y se encargan de manejar las señales y entregarlas como datos útiles. Las señales digitales que se trasmiten son de datos, de direcciones o señales de control.

Los buses definen su capacidad de acuerdo a la frecuencia máxima de envío y al ancho de los datos. Por lo general estos valores son inversamente proporcionales: si se tiene una alta frecuencia, el ancho de datos debe ser pequeño. Esto se debe a que la interferencia entre las señales (crosstalk) y la dificultad de sincronizarlas, crecen con la frecuencia, de manera que un bus con pocas señales es menos susceptible a esos problemas y puede funcionar a alta velocidad.

Todos los buses de computador tienen funciones especiales como las interrupciones y las DMA que permiten que un dispositivo periférico acceda a una CPU o a la memoria usando el mínimo de recursos.

Primera Generación

Bus Backplane del PDP-11 junto con algunas tarjetas.

Los primeros computadores tenían 2 sistemas de buses, uno para la memoria y otro para los demás dispositivos. La CPU tenía que acceder a dos sistemas con instrucciones para cada uno, protocolos y sincronizaciones diferentes.

La empresa DEC notó que el uso de dos buses no era necesario si se combinaban las direcciones de memoria con las de los periféricos en un solo espacio de memoria (mapeo), de manera que la arquitectura se simplificaba ahorrando costos de fabricación en equipos fabricados en masa, como eran los primeros minicomputadores.

Los primeros microcomputadores se basaban en la conexión de varias tarjetas de circuito impreso a un bus Backplane pasivo que servía de eje al sistema. En ese bus se conectaba la tarjeta de CPU que realiza las funciones de arbitro de las comunicaciones con las demás tarjetas de dispositivo conectadas; las tarjetas incluían la memoria, controladoras de diskette y disco, adaptadores de vídeo. La CPU escribía o leía los datos apuntando a la dirección que tuviera el dispositivo buscado en el espacio único de direcciones haciendo que la información fluyera a través del bus principal.

Entre las implementaciones más conocidas, están los buses Bus S-100 y el Bus ISA usados en varios microcomputadores de los años 70 y 80. En ambos, el bus era simplemente una extensión del bus del procesador de manera que funcionaba a la misma frecuencia. Por ejemplo en los sistemas con procesador Intel 80286 el bus ISA tenia 6 u 8 Mhz de frecuencia dependiendo del procesador.[1]

Segunda generación

Jerarquía de diversos buses en un equipo relativamente moderno: SATA, FSB, AGP, USB entre otros.

El hecho de que el bus fuera pasivo y que usara la CPU como control, representaba varios problemas para la ampliación y modernización de cualquier sistema con esa arquitectura. Además que la CPU utilizaba una parte considerable de su potencia en controlar el bus.

Desde que los procesadores empezaron a funcionar con frecuencias más altas, se hizo necesario jerarquizar los buses de acuerdo a su frecuencia: se creó el concepto de bus de sistema (conexión entre el procesador y la RAM) y de buses de expansión, haciendo necesario el uso de un chipset.

El bus ISA utilizado como backplane en el PC IBM original pasó de ser un bus de sistema a uno de expansión, dejando su arbitraje a un integrado del chipset e implementando un bus a una frecuencia más alta para conectar la memoria con el procesador.

En cambio, el bus Nubus era independiente desde su creación, tenía un controlador propio y presentaba una interfaz estándar al resto del sistema, permitiendo su inclusión en diferentes arquitecturas. Fue usado en diversos equipos, incluyendo algunos de Apple y se caracterizaba por tener un ancho de 32 bits y algunas capacidades Plug and Play (autoconfiguración), que lo hacían muy versátil y adelantado a su tiempo. Entre otros ejemplos de estos buses autónomos, están el AGP y el bus PCI.

Tercera generación

Los buses de tercera generación se caracterizan por tener conexiones punto a punto, a diferencia de los buses arriba nombrados en los que se comparten señales de reloj. Esto se logra reduciendo fuertemente el número de conexiones que presenta cada dispositivo usando interfaces seriales. Entonces cada dispositivo puede negociar las características de enlace al inicio de la conexión y en algunos casos de manera dinámica, al igual que sucede en las redes de comunicaciones. Entre los ejemplos más notables, están los buses PCI-Express, el Infiniband y el HyperTransport.

Tipos de Bus

Existen dos grandes tipos clasificados por el método de envío de la información: bus paralelo o bus serie.

Hay diferencias en el desempeño y hasta hace unos años se consideraba que el uso apropiado dependía de la longitud física de la conexión: para cortas distancias el bus paralelo, para largas el serial.

Bus paralelo

Es un bus en el cual los datos son enviados por bytes al mismo tiempo, con la ayuda de varias líneas que tienen funciones fijas. La cantidad de datos enviada es bastante grande con una frecuencia moderada y es igual al ancho de los datos por la frecuencia de funcionamiento. En los computadores ha sido usado de manera intensiva, desde el bus del procesador, los buses de discos duros, tarjetas de expansión y de vídeo, hasta las impresoras.

 

El Front Side Bus de los procesadores Intel es un bus de este tipo y como cualquier bus presenta unas funciones en líneas dedicadas:

  • Las Líneas de Dirección son las encargadas de indicar la posición de memoria o el dispositivo con el que se desea establecer comunicación.
  • Las Líneas de Control son las encargadas de enviar señales de arbitraje entre los dispositivos. Entre las más importantes están las líneas de interrupción, DMA y los indicadores de estado.
  • Las Líneas de Datos trasmiten los bits de forma aleatoria de manera que por lo general un bus tiene un ancho que es potencia de 2.

Un bus paralelo tiene conexiones físicas complejas, pero la lógica es sencilla, que lo hace útil en sistemas con poco poder de cómputo. En los primeros microcomputadores, el bus era simplemente la extensión del bus del procesador y los demás integrados "escuchan" las línea de direcciones, en espera de recibir instrucciones. En el PC IBM original, el diseño del bus fue determinante a la hora de elegir un procesador con I/O de 8 bits (Intel 8088), sobre uno de 16 (el 8086), porque era posible usar hardware diseñado para otros procesadores, abaratando el producto.

Bus serie

En este los datos son enviados, bit a bit y se reconstruyen por medio de registros o rutinas de software. Está formado por pocos conductores y su ancho de banda depende de la frecuencia. Es usado desde hace menos de 10 años en buses para discos duros, unidades de estado sólido, tarjetas de expansión y para el bus del procesador

TIPOS DE MEMORIA RAM

Actualmente, la cantidad mínima recomendada de RAM son 512 MB. Aunque los nuevos sistemas operativos, como Windows Vista, funcionan mejor con 1 GB o más.

Tipos de RAM


Tantos como quieras: DRAM, Fast Page, EDO, SDRAM... y lo que es peor, varios nombres para la misma cosa. Trataremos estos cuatro, que son los principales.

DRAM:
Dinamic-RAM, o RAM a secas, ya que es "la original", y por tanto la más lenta (aunque recuerda: siempre es mejor tener la suficiente memoria que tener la más rápida, pero andar escasos).


Usada hasta la época del 386, su velocidad de refresco típica es de 80 ó 70 nanosegundos (ns), tiempo éste que tarda en vaciarse para poder dar entrada a la siguiente serie de datos. Por ello, es más rápida la de 70 ns que la de 80 ns.

Físicamente, aparece en forma de DIMMs o de SIMMs, siendo estos últimos de 30 contactos.

Fast Page (FPM):
a veces llamada DRAM (o sólo "RAM"), puesto que evoluciona directamente de ella, y se usa desde hace tanto que pocas veces se las diferencia. Algo más rápida, tanto por su estructura (el modo de Página Rápida) como por ser de 70 ó 60 ns.


Usada hasta con los primeros Pentium, físicamente aparece como SIMMs de 30 ó 72 contactos (los de 72 en los Pentium y algunos 486).

EDO:
o EDO-RAM, Extended Data Output-RAM. Evoluciona de la Fast Page; permite empezar a introducir nuevos datos mientras los anteriores están saliendo (haciendo su Output), lo que la hace algo más rápida (un 5%, más o menos).


Muy común en los Pentium MMX y AMD K6, con refrescos de 70, 60 ó 50 ns. Se instala sobre todo en SIMMs de 72 contactos, aunque existe en forma de DIMMs de 168.

SDRAM:
Sincronic-RAM. Funciona de manera sincronizada con la velocidad de la placa (de 50 a 66 MHz), para lo que debe ser rapidísima, de unos 25 a 10 ns. Sólo se presenta en forma de DIMMs de 168 contactos; es usada en los Pentium II de menos de 350 MHz y en los Celeron.

PC100:
o SDRAM de 100 MHz. Memoria SDRAM capaz de funcionar a esos 100 MHz, que utilizan los AMD K6-2, Pentium II a 350 MHz y micros más modernos; teóricamente se trata de unas especificaciones mínimas que se deben cumplir para funcionar correctamente a dicha velocidad, aunque no todas las memorias vendidas como "de 100 MHz" las cumplen.


SIMMs y DIMMs

Se trata de la forma en que se juntan los chips de memoria, del tipo que sean, para conectarse a la placa base de la computadora. Son unas plaquitas alargadas con conectores en un extremo; al conjunto se le llama módulo.El número de conectores depende del bus de datos del microprocesador, que es la autopista por la que viajan los datos; el número de carriles de dicha autopista representaría el número de bits de información que puede manejar cada vez.

SIMMs:
Single In-line Memory Module, con 30 ó 72 contactos. Los de 30 contactos pueden manejar 8 bits cada vez, por lo que en un 386 ó 486, que tiene un bus de datos de 32 bits, necesitamos usarlos de 4 en 4 módulos iguales. Miden unos 8,5 cm ó 10,5 cm y sus zócalos suelen ser de color blanco.

Los SIMMs de 72 contactos, más modernos, manejan 32 bits, por lo que se usan de 1 en 1 en los 486; en los Pentium se haría de 2 en 2 módulos (iguales), porque el bus de datos de los Pentium es el doble de grande (64 bits).

DIMMs:
más alargados (unos 13 cm), con 168 contactos y en zócalos generalmente negros; llevan dos muescas para facilitar su correcta colocación. Pueden manejar 64 bits de una vez, por lo que pueden usarse de 1 en 1 en los Pentium, K6 y superiores. Existen para voltaje estándar (5 voltios) o reducido (3.3 V).

Y podríamos añadir los módulos SIP, que eran parecidos a los SIMM pero con frágiles patitas soldadas y que no se usan desde hace bastantes años, o cuando toda o parte de la memoria viene soldada en la placa (caso de algunas PCs de marca).

Otros tipos de RAMBEDO (Burst-EDO):
una evolución de la EDO, que envía ciertos datos en "ráfagas". Poco extendida, compite en prestaciones con la SDRAM.

Memorias con paridad:
consisten en añadir a cualquiera de los tipos anteriores un chip que realiza una operación con los datos cuando entran en el chip y otra cuando salen. Si el resultado ha variado, se ha producido un error y los datos ya no son fiables.

Dicho así, parece una ventaja; sin embargo, la computadora sólo avisa de que el error se ha producido, no lo corrige. Es más, estos errores son tan improbables que la mayor parte de los chips no los sufren jamás aunque estén funcionando durante años; por ello, hace años que todas las memorias se fabrican sin paridad.ECC: memoria con corrección de errores. Puede ser de cualquier tipo, aunque sobre todo EDO-ECC o SDRAM-ECC. Detecta errores de datos y los corrige; para aplicaciones críticas. Usada en servidores y mainframes.

Memorias de Vídeo:
para tarjetas gráficas. De menor a mayor rendimiento, pueden ser: DRAM -> FPM -> EDO -> VRAM -> WRAM -> SDRAM -> SGRAM.

Actualizar la memoria RAM


Antiguamente resultaba casi impensable aumentar la cantidad de memoria RAM como no fuera en 2 ó 4 megas, y eso a costa de dejar la billetera en el intento, ya que la memoria era muy costosa por mega. Sin embargo, con los precios actuales, cualquiera puede pensar en añadir 16, 32 ó 64 MB a su PC fácilmente.

Ante todo, hay que tener en cuenta que actualizar la memoria de una computadora muy antigua como un 8086, un 286 ó muchos 386 SX resulta casi imposible; en estas la memoria o no es ampliable (por venir soldada en placa o no tener ranuras para ampliarla) o no se fabrica desde hace años la que sería necesaria.

Por cierto: casi todas las computadoras de marca usan memorias especiales, independientemente de si son 386, 486. En esos casos de PCs antiguas, deberás contactarte con el fabricante o comprar memorias compatibles de algún especialista. Esta desgracia se cumple para la mayoría de las PCs de marca, excepto algunas modernas tipo Pentium o superiores.

En cuanto a los que sí podrás actualizar con tus manos, te darás cuenta pronto de que existe una serie de normas a seguir muy extensa, que a decir verdad no siempre se cumplen. Los pasos que deberá seguir son:

1
.- Identificar el tipo de memoria que utiliza tu PC. La fuente más apropiada de información a este respecto es el manual de la placa base. Algunas placas base admiten más de un tipo de memoria, pero en general mezclar dos tipos o velocidades distintos de memoria es una garantía de incompatibilidades y problemas; incluso dos módulos iguales de distinta marca no tienen por qué ser compatibles, especialmente cuando se trata de marcas de no demasiada calidad... tampoco te asustes, muchas veces mezclar velocidades o marcas distintas, e incluso mezclar los tipos FPM y EDO, no da problemas; pero por si acaso busca siempre memorias lo más parecidas posible.

2
.- Una vez leído el manual de la placa base, no te fíes y comprueba qué tipo de memoria hay en realidad en tu computadora. Para ello desconéctala, ábrela, descárgate de electricidad estática y observa la placa.Los zócalos SIMM suelen ser blancos y de unos 10,5 cm (los de 30 contactos más cortos, unos 8,5 cm) y los DIMM negros y muy largos (unos 13 cm).En cuanto a los módulos en sí, la velocidad se suele indicar sobre los chips de memoria, mediante un número o dos al final del serigrafiado que indica los nanosegundos (ns), como "-7" o "-07" (curiosamente, rara vez "-70") para 70 ns, o "-6" para 60 ns.Esto es también aplicable a los chips de caché (que después de todo no es más que memoria rápida con una finalidad determinada); por ejemplo, a la izquierda están dos chips de memoria caché de 15 ns. Y, finalmente, algunos chips de memoria (especialmente del tipo SDRAM) llevan escrita no la velocidad de refresco (60 ns, 50 ns...) sino la velocidad máxima en MHz que pueden alcanzar sin problemas (66 MHz o 100 MHz son los valores más comunes hoy en día).En cuanto a diferenciar memoria EDO de FPM, principalmente observa los mensajes de la BIOS al arrancar, especialmente durante el test de memoria, o entra dentro de la misma y observa si encuentras mensajes del tipo "EDO DRAM in banks 0,1" o bien "No EDO DRAM present".


3.- Ahora que sabes qué tipo de memoria admite tu PC, elije la configuración de la memoria a añadir.
Esto de colocar los módulos en ciertos grupos se llama completar los bancos de memoria. En algunas placas hay más libertad, pero esto es tan raro como no tener problemas mezclando tipos o velocidades distintos. Lee el manual de la placa atentamente para las combinaciones admisibles, no siempre todas las teóricas son utilizables.

4
.- Compra la memoria nueva. Recuerda: mismo tipo (FPM, EDO, SDRAM), mismo conector (SIMM de 30 contactos, SIMM de 72, DIMM de 168), misma velocidad (80, 70, 60, 50, 20... ns) e incluso si puedes misma marca que la antigua. En cuanto a marcas, las hay mejores que otras, como las Kingston, HP, Samsung... si te suena la marca, puede que sea mejor que otra. Sin embargo, se han visto memorias de marca fallar en placas donde memorias genéricas "Made in Taiwan" funcionaban a la perfección; para esto no existe más regla fija que la Ley de Murphy. :)

5
.- Procede a instalar la memoria. Para ello, desconecta, descárgate, abre la caja, y aparte, desconecta o desinstala todo lo que te moleste en el acceso a los zócalos. Mira el serigrafiado y/o el manual para encontrar cuál es el extremo del pin número 1 (indicado por un pequeño 1 o por un punto o flecha) y cuál el final (el del pin 30, 72 o 168).

6
.- El proceso de introducir el módulo depende de su tipo:

SIMM de 30 contactos: entran en posición vertical, formando 90º con la placa base, y se insertan por pura presión. Resulta fundamental estar seguro de que no lo estamos introduciendo del revés, para lo cual los zócalos suelen ser ligeramente asimétricos, con unos salientes para no equivocarnos, además de tener marcada la posición del pin 1.
SIMM de 72 contactos: se insertan en posición inclinada unos 45º respecto de la placa, y seguidamente se enderezan hasta formar 90º con la placa, tras lo cual quedan atrapados por unas presillas en los extremos. Resulta asimismo importante no equivocar la orientación.
DIMM de 168 contactos: se insertan de manera vertical, como los SIMM de 30 contactos. Tienen dos muescas para no equivocar su orientación.

7
.- Una vez instalada físicamente, verifica el funcionamiento de la memoria. Primero, asegúrate de que la BIOS la reconoce, tanto en el test de arranque como en los menús de la misma; para entrar en ella, quizá se haga pulsando la tecla "Supr" ("Del"). No te preocupes si el recuento de memoria de una o ambas pruebas indica algo menos, como 23.936 Kb en vez de 24.576 Kb (24 MB, 24 "megas"), esto no significa que la memoria sea defectuosa en absoluto. Sin embargo, en ambos casos debe estar cerca de la cifra real, ¡nada de 32MB cuando ha instalado 64!!Si esto está bien, prueba arrancar y usar algunos programas, además del sistema operativo e interfaz gráfica favoritos. A estos efectos, Windows 98 y NT son mucho más exquisitos que el viejo, adorable y tolerante DOS, así que haz las pruebas sobre ellos o sobre DOS y Windows 3.1 si lo tiene. Si haciendo el trabajo habitual nada falla más de lo normal, ¡felicidades!! Ya has actualizado la memoria con éxito.


Problemas comunes y soluciones

Instalar memoria nueva en una computadora puede llegar a ser una fuente importante de dolores de cabeza, no por su instalación, puesto que es algo muy sencillo, sino porque pueden existir pequeños problemas e incompatibilidades que en ocasiones ni siquiera tienen un motivo identificable.

¿Qué pasa si no tengo ranuras libres?

Pues tendrás que desechat o vender de segunda mano parte de la memoria que tienes actualmente.
Si vas a sustituir toda la memoria, aprovecha para optimizarla un poco; es decir, que si actualmente la memoria es FPM de 70 ns instala la nueva de 60 ns, o si es EDO de 60 ns instales de 50 ns. Eso sí, siempre que tu placa no indique la necesidad de usar memoria de una velocidad específica (generalmente, y mientras no mezclemos velocidades distintas, poner memoria más rápida no es problema; ponerla más lenta sí).

¿Qué pasa si no encuentro la memoria apropiada?


Los SIMM de 30 contactos, sobre todo de bajas velocidades (es decir, de tiempos de espera altos, de 100 u 80 ns), son especialmente difíciles de encontrar y en casi ningún caso serán nuevos. De esta forma, encontrar módulos FPM o EDO lentos puede llevar un cierto tiempo, aunque en este caso no se debería desesperar.De cualquier modo, si te desesperas y decides comprar memoria de diferente velocidad o tipo, sustitúyela por la ya instalada. Si mezclas distintos tipos o velocidades te estás jugando a tener muy probables inconvenientes.

Errores al inicio y fallos de memoria


Puede que acabes de descubrir lo que es una incompatibilidad de memoria (o que un módulo esté defectuoso, pero esto es más improbable). En este caso, es recomendable:

- Verificar que se haya instalado físicamente bien la memoria, si es del tipo y velocidad adecuados.
- Verificar con el manual de la placa en mano, si estás en el zócalo adecuado y si es una combinación de módulos posible.
- Intercambiar los módulos entre sí; prueba sólo con unos, luego con otros y por último con todos

MEMORIA RAM

La memoria de acceso aleatorio (en inglés: random-access memory, cuyo acrónimo es RAM) es la memoria desde donde el procesador recibe las instrucciones y guarda los resultados.

 

Nomenclatura

La frase memoria RAM se utiliza frecuentemente para referirse a los módulos de memoria que se usan en los computadores personales y servidores. En el sentido estricto, los módulos de memoria contienen un tipo, entre varios de memoria de acceso aleatorio, ya que las ROM, memorias Flash, caché (SRAM), los registros en procesadores y otras unidades de procesamiento también poseen la cualidad de presentar retardos de acceso iguales para cualquier posición. Los módulos de RAM son la presentación comercial de este tipo de memoria, que se compone de circuitos integrados soldados sobre un circuito impreso, en otros dispositivos como las consolas de videojuegos, esa misma memoria va soldada sobre la placa principal.

Su capacidad se mide en bytes, y dada su naturaleza siempre binaria, sus múltiplos serán representados en múltiplos binarios tales como Kibibyte, Mebibyte, Gibibyte...

Historia

Integrado de silicio de 64 bits sobre un sector de memoria de núcleo (finales de los 60).

La historia está marcada por la necesidad del volumen de datos. Originalmente, los datos eran programados por el usuario con movimientos de interruptores. Se puede decir que el movimiento de datos era bit a bit. Las necesidades apuntaron a una automatización y se crearon lo que se denomina byte de palabra. Desde una consola remota, se trasladaban los interruptores asignándoles valores de letra, que correspondían a una orden de programación al microprocesador. Así, si se deseaba programar una orden NOT con dos direcciones distintas de memoria, solo se tenía que activar el grupo de interruptores asociados a la letra N, a la letra O y a la letra T. Seguidamente, se programaban las direcciones de memoria sobre las cuales recibirían dicho operador lógico, para después procesar el resultado. Los interruptores evolucionaron asignándoles una tabla de direccionamiento de 16x16 bytes, en donde se daban 256 valores de byte posibles (la actual tabla ASCII). En dicha tabla, se traducen lo que antes costaba activar 8 interruptores por letra, a una pulsación por letra (de cara al recurso humano, un ahorro en tiempos. Una sola pulsación, predisponía 1 byte en RAM... o en otras palabras, cambiaba la posición de 8 interruptores con una sola pulsación). Se usó el formato de máquina de escribir, para representar todo el alfabeto latino, necesario para componer palabras en inglés; así como los símbolos aritméticos y lógicos que permitían la escritura de un programa directamente en memoria RAM a través de una consola o teclado.

En origen, los programadores no veían en tiempo real lo que tecleaban, teniendo que imprimir de cuando en cuando el programa residente en memoria RAM y haciendo uso del papel a la hora de ir modificando o creando un nuevo programa. Dado que el papel era lo más accesible, los programas comenzaron a imprimirse en un soporte de celulosa más resistente, creando lo que se denominó Tarjeta perforada. Así pues, los programas constaban de una o varias tarjetas perforadas, que se almacenaban en archivadores de papel con las típicas anillas de sujeción. Dichas perforaciones, eran leídas por un dispositivo de entrada, que no era muy diferente al teclado y que constaba de pulsadores que eran activados o desactivados, dependiendo de si la tarjeta en la posición de byte, contenía una perforación o no. Cada vez que se encendía la máquina, requería de la carga del programa que iba a ejecutar.

Dado que los datos en memoria son de 0 o 1, que esas posiciones físicamente representan el estado de un conmutador, que la estimulación del conmutador evolucionó a pulsos electromagnéticos, el almacenamiento de los programas era cuestión de tiempo que su almacenamiento pasara del papel a un soporte lógico, tal como las cintas de almacenamiento. Las cintas eran secuenciales, y la composición de la cinta era de un material magnetoestático; bastaba una corriente Gauss para cambiar las polaridades del material. Dado que el material magnético puede tener polaridad norte o sur, era ideal para representar el 0 o el 1. Así, ahora, cargar un programa no era cuestión de estar atendiendo un lector de tarjetas en el cual se debían de ir metiendo de forma interminable tarjetas perforadas que apenas podían almacenar apenas unos bytes. Ahora, los dispositivos electromagnéticos secuenciales requerían la introducción de la cinta y la pulsación de una tecla para que se cargara todo el programa de inicio a fin, de forma secuencial. Los accesos aleatorios no aparecieron hasta la aparición del disco duro y el Floppy. Con estos medios, un cabezal lector se deslizaba por la superficie en movimiento, si dicho movimiento tenía como consecuencia la lectura de un valor N-N (norte-norte) no generaba corriente, tampoco si era S-S (Sur-Sur), por el contrario, si era N-S o S-N sí creaba una corriente, que era captada por el circuito que mandaba el dato a la memoria RAM.

Toda esta automatización requiso del diseño de un sistema operativo, o de un área de gestión del recurso para su automatización. Estos sistemas requerían de un área de memoria reservada, en origen de 64 Kb (Capacidades de representación de texto en monitor monocromo), para irse ampliando a 128 Kb (Monocromo con capacidades gráficas), 256 (Texto y gráficos a dos colores), 512 (Texto y gráficos a 4 colores) y los tradicionales 640 Kb (Texto y gráficos a 16 colores). Esa memoria se denominó memoria base.

Es en esta parte del tiempo, en donde se puede hablar de un área de trabajo para la mayor parte del software de un computador. La RAM continua siendo volátil por lo que posee la capacidad de perder la información una vez que se agote su fuente de energía.[1] Existe una memoria intermedia entre el procesador y la RAM, llamada caché, pero ésta sólo es una copia (de acceso rápido) de la memoria principal (típicamente discos duros) almacenada en los módulos de RAM.[1]

4MiB de memoria RAM para un computador VAX de finales de los 70. Los integrados de memoria DRAM están agrupados arriba a derecha e izquierda.

Módulos de memoria tipo SIPP instalados directamente sobre la placa base.

La denominación “de Acceso aleatorio” surgió para diferenciarlas de las memoria de acceso secuencial, debido a que en los comienzos de la computación, las memorias principales (o primarias) de las computadoras eran siempre de tipo RAM y las memorias secundarias (o masivas) eran de acceso secuencial (unidades de cinta o tarjetas perforadas). Es frecuente pues que se hable de memoria RAM para hacer referencia a la memoria principal de una computadora, pero actualmente la denominación no es precisa.

Uno de los primeros tipos de memoria RAM fue la memoria de núcleo magnético, desarrollada entre 1949 y 1952 y usada en muchos computadores hasta el desarrollo de circuitos integrados a finales de los años 60 y principios de los 70. Antes que eso, las computadoras usaban relés y líneas de retardo de varios tipos construidas con tubos de vacío para implementar las funciones de memoria principal con o sin acceso aleatorio.

En 1969 fueron lanzadas una de las primeras memorias RAM basadas en semiconductores de silicio por parte de Intel con el integrado 3101 de 64 bits de memoria y para el siguiente año se presentó una memoria DRAM de 1 Kibibyte, referencia 1103 que se constituyó en un hito, ya que fue la primera en ser comercializada con éxito, lo que significó el principio del fin para las memorias de núcleo magnético. En comparación con los integrados de memoria DRAM actuales, la 1103 es primitiva en varios aspectos, pero tenía un desempeño mayor que la memoria de núcleos.

En 1973 se presentó una innovación que permitió otra miniaturización y se convirtió en estándar para las memorias DRAM: la multiplexación en tiempo de la direcciones de memoria. MOSTEK lanzó la referencia MK4096 de 4 Kb en un empaque de 16 pines,[2] mientras sus competidores las fabricaban en el empaque DIP de 22 pines. El esquema de direccionamiento[3] se convirtió en un estándar de facto debido a la gran popularidad que logró esta referencia de DRAM. Para finales de los 70 los integrados eran usados en la mayoría de computadores nuevos, se soldaban directamente a las placas base o se instalaban en zócalos, de manera que ocupaban un área extensa de circuito impreso. Con el tiempo se hizo obvio que la instalación de RAM sobre el impreso principal, impedía la miniaturización , entonces se idearon los primeros módulos de memoria como el SIPP, aprovechando las ventajas de la construcción modular. El formato SIMM fue una mejora al anterior, eliminando los pines metálicos y dejando unas áreas de cobre en uno de los bordes del impreso, muy similares a los de las tarjetas de expansión, de hecho los módulos SIPP y los primeros SIMM tienen la misma distribución de pines.

A finales de los 80 el aumento en la velocidad de los procesadores y el aumento en el ancho de banda requerido, dejaron rezagadas a las memorias DRAM con el esquema original MOSTEK, de manera que se realizaron una serie de mejoras en el direccionamiento como las siguientes:

Módulos formato SIMM de 30 y 72 pines, los últimos fueron utilizados con integrados tipo EDO-RAM.

  • FPM-RAM (Fast Page Mode RAM)

Inspirado en técnicas como el "Burst Mode" usado en procesadores como el Intel 486,[4] se implantó un modo direccionamiento en el que el controlador de memoria envía una sola dirección y recibe a cambio esa y varias consecutivas sin necesidad de generar todas las direcciones. Esto supone un ahorro de tiempos ya que ciertas operaciones son repetitivas cuando se desea acceder a muchas posiciones consecutivas. Funciona como si deseáramos visitar todas las casas en una calle: después de la primera vez no seria necesario decir el número de la calle únicamente seguir la misma. Se fabricaban con tiempos de acceso de 70 ó 60 ns y fueron muy populares en sistemas basados en el 486 y los primeros Pentium.

  • EDO-RAM (Extended Data Output RAM)

Lanzada en 1995 y con tiempos de accesos de 40 o 30 ns suponía una mejora sobre su antecesora la FPM. La EDO, también es capaz de enviar direcciones contiguas pero direcciona la columna que va utilizar mientras que se lee la información de la columna anterior, dando como resultado una eliminación de estados de espera, manteniendo activo el búffer de salida hasta que comienza el próximo ciclo de lectura.

  • BEDO-RAM (Burst Extended Data Output RAM)

Fue la evolución de la EDO RAM y competidora de la SDRAM, fue presentada en 1997. Era un tipo de memoria que usaba generadores internos de direcciones y accedía a mas de una posición de memoria en cada ciclo de reloj, de manera que lograba un desempeño un 50% mejor que la EDO. Nunca salió al mercado, dado que Intel y otros fabricantes se decidieron por esquemas de memoria sincrónicos que si bien tenían mucho del direccionamiento MOSTEK, agregan funcionalidades distintas como señales de reloj.

Arquitectura base

En origen, la memoria RAM se componía de hilos de cobre que atravesaban toroides de ferrita, la corriente polariza la ferrita. Mientras esta queda polarizada, el sistema puede invocar al procesador accesos a partes del proceso que antes (en un estado de reposo) no es posible acceder. En sus orígenes, la invocación a la RAM, producía la activación de contactores, ejecutando instrucciones del tipo AND, OR y NOT. La programación de estos elementos, consistía en la predisposición de los contactores para que, en una línea de tiempo, adquiriesen las posiciones adecuadas para crear un flujo con un resultado concreto. La ejecución de un programa, provocaba un ruido estruendoso en la sala en la cual se ejecutaba dicho programa, por ello el área central de proceso estaba separada del área de control por mamparas insonorizadas.

Con las nuevas tecnologías, las posiciones de la ferrita se ha ido sustituyendo por, válvulas de vacío, transistores y en las últimas generaciones, por un material sólido dieléctrico. Dicho estado estado sólido dieléctrico tipo DRAM permite que se pueda tanto leer como escribir información.

Uso por el sistema

Se utiliza como memoria de trabajo para el sistema operativo, los programas y la mayoría del software. Es allí donde se cargan todas las instrucciones que ejecutan el procesador y otras unidades de cómputo. Se denominan "de acceso aleatorio" porque se puede leer o escribir en una posición de memoria con un tiempo de espera igual para cualquier posición, no siendo necesario seguir un orden para acceder a la información de la manera más rápida posible.

Módulos de la memoria RAM

Formato SO-DIMM.

Los módulos de memoria RAM son tarjetas de circuito impreso que tienen soldados integrados de memoria DRAM por una o ambas caras. La implementación DRAM se basa en una topología de Circuito eléctrico que permite alcanzar densidades altas de memoria por cantidad de transistores, logrando integrados de decenas o cientos de Megabits. Además de DRAM, los módulos poseen un integrado que permiten la identificación de los mismos ante el computador por medio del protocolo de comunicación SPD.

La conexión con los demás componentes se realiza por medio de un área de pines en uno de los filos del circuito impreso, que permiten que el modulo al ser instalado en un zócalo apropiado de la placa base, tenga buen contacto eléctrico con los controladores de memoria y las fuentes de alimentación. Los primeros módulos comerciales de memoria eran SIPP de formato propietario, es decir no había un estándar entre distintas marcas. Otros módulos propietarios bastante conocidos fueron los RIMM, ideados por la empresa RAMBUS.

La necesidad de hacer intercambiable los módulos y de utilizar integrados de distintos fabricantes condujo al establecimiento de estándares de la industria como los JEDEC.

  • Módulos SIMM: Formato usado en computadores antiguos. Tenían un bus de datos de 16 o 32 bits
  • Módulos DIMM: Usado en computadores de escritorio. Se caracterizan por tener un bus de datos de 64 bits.
  • Módulos SO-DIMM: Usado en computadores portátiles. Formato miniaturizado de DIMM.

Relación con el resto del sistema

Diagrama de la arquitectura de un ordenador.

Dentro de la jerarquía de memoria la RAM se encuentra en un nivel después de los registros del procesador y de las cachés. Es una memoria relativamente rápida y de una capacidad media: sobre el año 2010), era fácil encontrar memorias con velocidades de más de 1 Ghz, y capacidades de hasta 8 GB por módulo, llegando a verse memorias pasando la barrera de los 3 Ghz por esa misma fecha mediante prácticas de overclock extremo. La memoria RAM contenida en los módulos, se conecta a un controlador de memoria que se encarga de gestionar las señales entrantes y salientes de los integrados DRAM. Algunas señales son las mismas que se utilizan para utilizar cualquier memoria: Direcciones de las posiciones, datos almacenados y señales de control.

El controlador de memoria debe ser diseñado basándose en una tecnología de memoria, por lo general soporta solo una, pero existen excepciones de sistemas cuyos controladores soportan dos tecnologías (por ejemplo SDR y DDR o DDR1 y DDR2), esto sucede en las épocas transitorias de una nueva tecnología de RAM. Los controladores de memoria en sistemas como PC y servidores se encuentran embebidos en el llamado "North Bridge" o "Puente Norte" de la placa base; o en su defecto, dentro del mismo procesador (en el caso de los procesadores desde AMD Athlon 64 e Intel Core i7) y posteriores; y son los encargados de manejar la mayoría de información que entra y sale del procesador.

Las señales básicas en el módulo están divididas en dos buses y un conjunto misceláneo de líneas de control y alimentación. Entre todas forman el bus de memoria:

  • Bus de datos: Son las líneas que llevan información entre los integrados y el controlador. Por lo general están agrupados en octetos siendo de 8,16,32 y 64 bits, cantidad que debe igualar el ancho del bus de datos del procesador. En el pasado, algunos formatos de modulo, no tenían un ancho de bus igual al del procesador.En ese caso había que montar módulos en pares o en situaciones extremas, de a 4 módulos, para completar lo que se denominaba banco de memoria, de otro modo el sistema no funciona. Esa es la principal razón de haber aumentar el número de pines en los módulos, igualando el ancho de bus de procesadores como el Pentium de 64 bits a principios de los 90.
  • Bus de direcciones: Es un bus en el cual se colocan las direcciones de memoria a las que se requiere acceder. No es igual al bus de direcciones del resto del sistema, ya que está multiplexado de manera que la dirección se envía en dos etapas.Para ello el controlador realiza temporizaciones y usa las líneas de control. En cada estándar de módulo se establece un tamaño máximo en bits de este bus, estableciendo un límite teórico de la capacidad máxima por módulo.
  • Señales misceláneas: Entre las que están las de la alimentación (Vdd, Vss) que se encargan de entregar potencia a los integrados. Están las líneas de comunicación para el integrado de presencia que da información clave acerca del módulo. También están las líneas de control entre las que se encuentran las llamadas RAS (row address strobe) y CAS (column address strobe) que controlan el bus de direcciones y las señales de reloj en las memorias sincrónicas SDRAM.

Entre las características sobresalientes del controlador de memoria, está la capacidad de manejar la tecnología de canal doble (Dual Channel), tres canales, o incluso cuatro para los procesadores venideros; donde el controlador maneja bancos de memoria de 128 bits. Aunque el ancho del bus de datos del procesador sigue siendo de 64 bits, el controlador de memoria puede entregar los datos de manera intercalada, optando por uno u otro canal, reduciendo las latencias vistas por el procesador. La mejora en el desempeño es variable y depende de la configuración y uso del equipo. Esta característica ha promovido la modificación de los controladores de memoria, resultando en la aparición de nuevos chipsets (la serie 865 y 875 de Intel) o de nuevos zócalos de procesador en los AMD (el 939 con canal doble , reemplazo el 754 de canal sencillo). Los equipos de gama media y alta por lo general se fabrican basados en chipsets o zócalos que soportan doble canal o superior.

Módulos de memoria instalados de 256 MiB cada uno en un sistema con doble canal.

Tecnologías de memoria

La tecnología de memoria actual usa una señal de sincronización para realizar las funciones de lectura-escritura de manera que siempre esta sincronizada con un reloj del bus de memoria, a diferencia de las antiguas memorias FPM y EDO que eran asíncronas. Hace más de una década toda la industria se decantó por las tecnologías síncronas, ya que permiten construir integrados que funcionen a una frecuencia superior a 66 MHz (A día de hoy, se han superado con creces los 1600 Mhz).

Memorias RAM con tecnologías usadas en la actualidad.

SDR SDRAM

Artículo principal: SDRAM

Memoria síncrona, con tiempos de acceso de entre 25 y 10 ns y que se presentan en módulos DIMM de 168 contactos. Fue utilizada en los Pentium II y en los Pentium III , así como en los AMD K6, AMD Athlon K7 y Duron. Está muy extendida la creencia de que se llama SDRAM a secas, y que la denominación SDR SDRAM es para diferenciarla de la memoria DDR, pero no es así, simplemente se extendió muy rápido la denominación incorrecta. El nombre correcto es SDR SDRAM ya que ambas (tanto la SDR como la DDR) son memorias síncronas dinámicas. Los tipos disponibles son:

  • PC100: SDR SDRAM, funciona a un máx de 100 MHz.
  • PC133: SDR SDRAM, funciona a un máx de 133 MHz.

DDR SDRAM

Artículo principal: DDR SDRAM

Memoria síncrona, envía los datos dos veces por cada ciclo de reloj. De este modo trabaja al doble de velocidad del bus del sistema, sin necesidad de aumentar la frecuencia de reloj. Se presenta en módulos DIMM de 184 contactos en el caso de ordenador de escritorio y en módulos de 144 contactos para los ordenadores portátiles. Los tipos disponibles son:

  • PC2100 o DDR 266: funciona a un máx de 133 MHz.
  • PC2700 o DDR 333: funciona a un máx de 166 MHz.
  • PC3200 o DDR 400: funciona a un máx de 200 MHz.

DDR2 SDRAM

SDRAM DDR2.

Artículo principal: DDR2

Las memorias DDR 2 son una mejora de las memorias DDR (Double Data Rate), que permiten que los búferes de entrada/salida trabajen al doble de la frecuencia del núcleo, permitiendo que durante cada ciclo de reloj se realicen cuatro transferencias. Se presentan en módulos DIMM de 240 contactos. Los tipos disponibles son:

  • PC2-4200 o DDR2-533: funciona a un máx de 533 MHz.
  • PC2-5300 o DDR2-667: funciona a un máx de 667 MHz.
  • PC2-6400 o DDR2-800: funciona a un máx de 800 MHz.
  • PC2-8600 o DDR2-1066: funciona a un máx de 1066 MHz.

DDR3 SDRAM

Artículo principal: DDR3

Las memorias DDR 3 son una mejora de las memorias DDR 2, proporcionan significantes mejoras en el rendimiento en niveles de bajo voltaje, lo que lleva consigo una disminución del gasto global de consumo. Los módulos DIMM DDR 3 tienen 240 pines, el mismo número que DDR 2; sin embargo, los DIMMs son físicamente incompatibles, debido a una ubicación diferente de la muesca. Los tipos disponibles son:

  • PC3-8600 o DDR3-1066: funciona a un máx de 1066 MHz.
  • PC3-10600 o DDR3-1333: funciona a un máx de 1333 MHz.
  • PC3-12800 o DDR3-1600: funciona a un máx de 1600 MHz.

RDRAM (Rambus DRAM)

Artículo principal: RDRAM

Memoria de gama alta basada en un protocolo propietario creado por la empresa Rambus, lo cual obliga a sus compradores a pagar regalías en concepto de uso. Esto ha hecho que el mercado se decante por la tecnología DDR, libre de patentes, excepto algunos servidores de grandes prestaciones (Cray) y la consola PlayStation 3. La RDRAM se presenta en módulos RIMM de 184 contactos.

Detección y corrección de errores

Existen dos clases de errores en los sistemas de memoria, las fallas (Hard fails) que son daños en el hardware y los errores (soft errors) provocados por causas fortuitas. Los primeros son relativamente fáciles de detectar (en algunas condiciones el diagnóstico es equivocado), los segundos al ser resultado de eventos aleatorios, son más difíciles de hallar. En la actualidad la confiabilidad de las memorias RAM frente a los errores, es suficientemente alta como para no realizar verificación sobre los datos almacenados, por lo menos para aplicaciones de oficina y caseras. En los usos más críticos, se aplican técnicas de corrección y detección de errores basadas en diferentes estrategias:

  • La técnica del bit de paridad consiste en guardar un bit adicional por cada byte de datos, y en la lectura se comprueba si el número de unos es par (paridad par) o impar (paridad impar), detectándose así el error.
  • Una técnica mejor es la que usa ECC, que permite detectar errores de 1 a 4 bits y corregir errores que afecten a un sólo bit esta técnica se usa sólo en sistemas que requieren alta fiabilidad.

Por lo general los sistemas con cualquier tipo de protección contra errores tiene un costo más alto, y sufren de pequeñas penalizaciones en desempeño, con respecto a los sistemas sin protección. Para tener un sistema con ECC o paridad, el chipset y las memorias debe tener soportar esas tecnologías. La mayoría de placas base no poseen dicho soporte.

Para los fallos de memoria se pueden utilizar herramientas de software especializadas que realizan pruebas integrales sobre los módulos de memoria RAM. Entre estos programas uno de los más conocidos es la aplicación Memtest86+ que detecta fallos de memoria.

Memoria RAM registrada

Es un tipo de módulo usado frecuentemente en servidores y equipos especiales. Poseen circuitos integrados que se encargan de repetir las señales de control y direcciones. Las señales de reloj son reconstruidas con ayuda del PLL que está ubicado en el módulo mismo. Las señales de datos pasan directamente del bus de memoria a los CI de memoria DRAM.

Estas características permiten conectar múltiples módulos de memoria (más de 4) de alta capacidad sin que haya perturbaciones en las señales del controlador de memoria, haciendo posible sistemas con gran cantidad de memoria principal (8 a 16 GiB). Con memorias no registradas, no es posible, debido a los problemas surgen de sobrecarga eléctrica a las señales enviadas por el controlador, fenómeno que no sucede con las registradas por estar de algún modo aisladas.

Entre las desventajas de estos módulos están el hecho de que se agrega un ciclo de retardo para cada solicitud de acceso a una posición no consecutiva y por supuesto el precio, que suele ser mucho más alto que el de las memorias de PC. Este tipo de módulos es incompatible con los controladores de memoria que no soportan el modo registrado, a pesar de que se pueden instalar físicamente en el zócalo. Se pueden reconocer visualmente porque tienen un integrado mediano, cerca del centro geométrico del circuito impreso, además de que estos módulos suelen ser algo más altos.

 

 


Partes del procesador

Unidad de Control, es la encargada de supervisar la secuencia de las operaciones que deben realizarse para ejecutar una instrucción.

- Unidad Aritmética y Lógica, es la encargada de realizar todas las operaciones que transforman los datos, en especial operaciones matemáticas como la suma y la resta, y lógicas como la negación y la afirmación.

- Registro, es donde se almacenan los datos más importantes durante la ejecución de las instrucciones; incluye el registro contador (indica qué instrucción sigue), el registro de instrucción (tiene la instrucción que se está ejecutando), el registro acumulador (donde se guardan resultados intermedios) y el registro de estado (que guarda avisos: si el resultado es cero, si es negativo, etc.